Strong accessibility for hyperbolic groups
نویسندگان
چکیده
منابع مشابه
Strong Accessibility of Coxeter Groups over Minimal Splittings
Given a class of groups C, a group G is strongly accessible over C if there is a bound on the number of terms in a sequence Λ1, Λ2, . . . , Λn of graph of groups decompositions of G with edge groups in C such that Λ1 is the trivial decomposition (with 1-vertex) and for i > 1, Λi is obtained from Λi−1 by non-trivially and compatibly splitting a vertex group of Λi−1 over a group in C, replacing t...
متن کاملLimit Groups for Relatively Hyperbolic
We begin the investigation of Γ-limit groups, where Γ is a torsion-free group which is hyperbolic relative to a collection of free abelian subgroups. Using the results of [16], we adapt the results from [21] and [22] to this context. Specifically, given a finitely generated group G, and a sequence of pairwise non-conjugate homomorphisms {hn : G → Γ}, we extract anR-tree with a nontrivial isomet...
متن کاملEquivariant covers for hyperbolic groups
Recall that a cover U is of dimension N if every x 2 X is contained in no more then N C 1 members of U . The asymptotic dimension of a finitely generated group is its asymptotic dimension as a metric space with respect to any word metric. An important result of Yu [19] asserts that the Novikov conjecture holds for groups of finite asymptotic dimension. This can be viewed as an injectivity resul...
متن کاملHyperbolic Geometry: Isometry Groups of Hyperbolic Space
The goal of this paper is twofold. First, it consists of an introduction to the basic features of hyperbolic geometry, and the geometry of an important class of functions of the hyperbolic plane, isometries. Second, it identifies a group structure in the set of isometries, specifically those that preserve orientation, and deals with the topological properties of their discrete subgroups. In the...
متن کاملLacunary hyperbolic groups
We call a finitely generated group lacunary hyperbolic if one of its asymptotic cones is an R-tree. We characterize lacunary hyperbolic groups as direct limits of Gromov hyperbolic groups satisfying certain restrictions on the hyperbolicity constants and injectivity radii. Using central extensions of lacunary hyperbolic groups, we solve a problem of Gromov by constructing a group whose asymptot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebraic & Geometric Topology
سال: 2008
ISSN: 1472-2739,1472-2747
DOI: 10.2140/agt.2008.8.1459